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Inferences for the Linear Errors-in-Variables With 
Changepoint Models 

Yi-Ping CHANG and Wen-Tao HUANG 

A new linear structural errors-in-variables regression with changepoint model is considered. In this model we consider the likelihood 
ratio test based on the maximum Hotelling T2 for the test of no change against the alternative of exactly one change. If there 
is a change, either known a priori or by testing, then we estimate the unknown changepoint parameter and some other related 
parameters by maximum likelihood. The limiting distribution of the changepoint estimator is investigated and it is shown that the 
asymptotic efficiency increases as the absolute regression slope coefficient increases. A Monte Carlo study shows that the proposed 
estimator performs satisfactorily. 
KEY WORDS: Asymptotic distribution; Asymptotic efficiency; Consistency; Likelihood ratio test. 

1. INTRODUCTION 

model with one independent variable can be expressed by 
The classical linear errors-in-variables regression (EIVR) 

Y,=a+/?<,+&i, ( i =  1, ..., n) 

and 

X,=<,+S, ,  ( i = l ,  ..., n). (1) 

where (Y and p are unknown constants. Here the s's are un- 
observable and we observe only pairs of values (X, , Y, ) , i = 
1,. . . , n. The errors of measurement ( E , ,  6,) are assumed to 
be independent and identically distributed with finite sec- 
ond moments. If the t's are random, then model (1) is called 
a structural E N R  model; if the <'s are deterministic, then 
the model is called afinctional EIVR model. In this article 
we assume the structural EIVR model. 

In the structural EIVR model, usually it is assumed that 
5, - N(pt ,a$) ,e ,  - N(O,a,'), and 6, - N(O,a,2) and 
that they are all independent. It is well known that this 
model lacks identifiability (Madansky 1959). The situation 
is widely discussed in the literature (see, e.g., Fuller 1987 
and Moran 197 1 ). 

However, in many practical situations, the assumption 
that the &'s are identical is violated. Consider an example 
in economics that can be stated as follows. Let 6, denote 
some family's true income at time i, let X ,  denote the fam- 
ily's measured income, let Y, denote its measured consump- 
tion, and let E, and 6, denote measurement errors. During 
the observations of (X , ,Y , ) ,  some new impact on the fi- 
nancial system in the society may occur-for instance, a 
new economic policy may be announced. The family's true 
income structure may start to change some time after the 
announcement; however, the relation between income and 
consumption remains unchanged. Under this situation, we 
may consider the structural EIVR model (l) ,  but with the 
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independent variables replaced by a changepoint model. Let 
{&, ~ i ,  &}bl be a sequence of independent random vectors 
satisfying 

& N ( P l , U $ )  (i = 1,. * , [nXl), 

ti N ( p 2 , 0 $ )  (i = [nX] + 1,. . . ,n), 

€ 2  - N(O,u,2) (i = l , . .  . ,n), 

and 

6, - N(0,aZ) (i = 1,. . . ,n), (2) 

where A, p1, p2, a$, a:, and a: are all unknown parameters. 
As can be seen, this model occurs when changepoints occur 
in a linear error-in-variables model. We call this model a lin- 
ear errors-in-variables regression with changepoint model. 
In this article we focus on the situation that has at most one 
changepoint, i.e. EIVR model (1) with assumption (2). 

This article provides an alternative approach to model- 
ing the EIVR model. In Section 2 and 3, based on ob- 
servations {(X,,Y,),i = 1 , 2 , . .  . ,n}, we are interested in 
testing whether a change occurs in <% and estimating the 
changepoint parameter A, some related parameters a and 
/?, and also other nuisance parameters p l ,p2 ,0$ ,a , ' ,  and 
a:, if there is a change in t,. In Section 4 we study the lim- 
iting distribution and asymptotic efficiency of the proposed 
changepoint estimator. We also give some Monte Carlo re- 
sults. Finally, in Section 5 we analyze some real data on 
stock market sales volumes using the proposed method. 

2. LIKELIHOOD RATIO TEST 

In this section we discuss the likelihood ratio test for 
testing Ho: p1 = p2 = p (no change) against H I :  p1 # p2, 

where p is an unknown constant. Under the EIVR model 
(1) and assumption (2), it is easy to obtain the marginal dis- 
tribution of (X , ,  Y,), which is given by BN(p1,  (Y + p p l ,  
a; + a:, a,' + P2a:,pa$),i = 1,. . . , [nA]  and B N ( p 2 ,  
a + Pp2.0: +a$, a,' + P2o:, /?a$), i = [nX] + 1,. . . , n, with 
( X t ,  Y,) independent, where BN(p1 ,p2 ,  a:, a;, pula2) de- 
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notes the bivariate normal with means p1 and p2, variances 
a:, and a;, and correlation p. 

We note that under Ho: p1 = p2 = p, this model is 
unidentifiable for the parameters (p ,  a, 0, a:, a;, a:); how- 
ever, it is identifiable for the parameters ( p , a  + &,a: + 
a:,.," + ,02a:,pa:). Therefore, let p, = p , p V  = a + 
Pp, a: = a: + (T;, 02 =,": + P2a:, and pxV = Pc:/(axay), 
and consider ( pz , pV , (T, , (T: , pzV ) as a reparameterization. 
This means that the original parameter space (our present 
model) is partitioned into equivalent class by the reparam- 
eterization. Each parameter vector in the equivalent class 
corresponds to some common distribution. 

The likelihood function under HO in the reparameter- 
ized space (i.e., the classical model) is the same as that 
in the original parameter space. The maximum likelihood 
function stays the same for each parameter vector in the 
corresponding equivalent class. With the reparameterized 
space, the marginal distributions of (Xi,Y,),i = 1, .. . ,n 
are independent and commonly distributed according to 
B N ( p t ,  p V ,  02, a;, pazag), and the likelihood function can 
be obtained. Under H I ,  the EIVR with changepoint model 
is identifiable for the parameters (p,  a, 0, a:, c,", a:). Thus 
it is a classical changepoint in mean vectors for a bivari- 
ate normal model while the covariance remains unchanged. 
Accordingly, the likelihood ratio test is not affected by this 
reparameterization under Ho, and the present model is a 
classical bivariate normal with changepoint model under 
HI. Srivastava and Worsley (1986) dealt with such testing 
problems; James, James and Siegmund ( 1992) considered 
the likelihood ratio test. Following Srivastava and Wors- 
ley (1986), the likelihood ratio statistic can be defined as 
follows. Denote the pooled sample variance matrix by 

1 + 2 [  i=[nX]+l y, - P([nX],n) 
Xi - X([nX],n,) 

1')  xz - R([nX],n) 
x [  y, - P([nX],n) 

and the Hotelling T2 for testing this difference is 

T: = Z',WTIZx. 

The likelihood ratio test for unknown X can be based on 
the maximum Hotelling T2,  

Ti = SUP Z',WT1Zx; 
o<x<1 

a large value of T i  indicates that it is in favor of H I .  Sri- 
vastava and Worsley (1 986) derived a conservative approx- 
imation for the null distribution of testing statistics based 
on an improved Bonferroni inequality; James et al. (1992) 
also obtained a tail approximation for the significance level 
of the modified likelihood ratio test. 

3. ESTIMATORS FOR THE PARAMETERS IF A 
CHANGE IS INDICATED 

If a change is indicated by the test, or if it is known a pri- 
ori that a change has indeed taken place, then the unknown 
changepoint parameter X can be estimated by = j /n ,  
where j maximizes 

in the range no 5 j 5 n - no, where 1 5 no 5 n/2. The 
other parameters can be estimated as follows. 

For convenience, we denote the true value of X by XO. 
If Xo is known, then the model can be seen as a special 
EIVR with two groups model. For this model, Wald (1940) 
gave a consistent estimator for the slope p. For two or more 
groups, Richardson and Wu ( 1970) proposed an estimator 
of the slope P under the condition that each group have 
equal sample size, and Cox (1976) considered the testing 
and estimation problems by using the maximum likelihood 
method. Hence when there are only two groups, for estimat- 
ing ,O, the estimators of Richardson and Wu (1970) reduced 
to Wald's result and Cox (1976) showed the estimator to 
be (E(0, [ ~ X O ] )  - ~ ( [ ~ X O I ,  n ) ) / ( X ( o ,  [ ~ A o ] )  - X([nx01, n)). 
This is in fact the slope of the line joining two means of 
the two groups. 

When Xo is known, the maximum likelihood estimators 
(MLE's) for the other parameters are given by 

bl(X0) = X ( 0 ,  [nXoI), f i Z ( X 0 )  = %[nXoI,74, 

where X ( a ,  b) = l / ( b  - a) E!=,+, Xi. The standardized x {m, [nXol) + %[nXoI, 411 
difference vector between the observations before and after 
the changepoint is defined by = q o ,  n) - p(X,)X(o,  n) 



Chang and Huang: Linear Errors-in-Variables With Changepoint Model 173 

and 

6 .a2(~0)  = ; { S X X ( O ,  [ ~ A o ] )  

+ ~ x x ( [ n ~ o ] , n ) }  - ~ : ( X O )  v 0,  (3) 

where Sxy(a,b) =  xi - 8 ( a , b ) } { Y ,  - F(a ,b ) }  
and z v y = max(r,y).  

For any value of A, let {(Xi,Y,),i = 1,. . . , [nX]} be 
the first group. and let {(Xi, x), i = [nA] + 1 , .  . . , n} 
be the second group. Consider the slope of the line 
joining the point ( X ( 0 ,  [.A]), Y(0,  [nX])) and the point 
(X([nX], n), F([nX], n))  as our estimator for p. We define a 
class of estimators of p as 

" 
1 

It is quite interesting to find in the following that each esti- 
mator in W is strongly consistent for p even if the partition 
of the data into two groups by X is incorrect. 

Theorem 3.1. For any 0 < X < 1 and b(X) E W ,  

a. p(X) + p with probability 1 as n -, 00; 

b. fi{b(X) - p} f N(0,(r2(X)), where 

and 
c. a2(Xo) < u2(A) for all X # Xo. 

Proof: See the Appendix. 

Remarks. 
1. Note that the consistency of b by (a) is also guaranteed 

under some general regularity conditions without assuming 
normality of X ,  and Y,. When A0 is known, the minimum 
asymptotic variance in this class is equal to the asymptotic 
variance of MLE under normality conditions, which is gen- 
erally the minimum in the class of all estimators. 

2. Because the asymptotic variance of @(A) is indepen- 
dent of c$, this theorem also holds when the true model is 
a functional EIVR with changepoint model. 

3. If X,p,oz, and ~ 6 2  are all fixed, then the asymptotic 
variance of ,&(A) is decreasing in lpl - p21. 

When XO is unknown, we propose estimators for the pa- 
rameters p ~ ,  p ~ ,  a, p, .:, uz, and 062 to be plug-in estimators 
of (3); that is, 

f i1  = fi l(A), f i 2  = f i z ( i ) ,  &=&(A),  
b = P G ) ,  6: = 6:(i), 69 = 6.,2(i), 

6: = 6Z(A). 

and 

We investigate some properties of the proposed estima- 
tors in next section. 

4. THE LIMITING DISTRIBUTION AND 
ASY M PTOTlC EFFlC I ENCY 

4.1 The Limiting Distribution 

In this section we study the limiting distributions of 
the proposed estimators when the sample size increases 
to infinity. The limiting distribution can be used to con- 
struct approximate confidence interval for the changepoint. 
If lpl - p ~ l  is large (relative to the variance) and 0; is 
moderate, then detection of change should be easier and es- 
timation of the changepoint should be more precise. Thus 
in application it might be more desirable to consider the 
situation of small changes. Furthermore, a confidence in- 
terval for the changepoint parameter based on the limit- 
ing distribution for small lpl - pgl is expected to cover 
the corresponding interval when 1p1 - p2 I is actually large. 
Now suppose that Ip2 - p11 depends on n and converges 
to zero at a rate vn. The following theorem describes the 
asymptotic distribution of the changepoint estimator under 
local shifts in mean. 

Theorem 4.1. Under the conditions no = n1/2vn,p1 - 
p2 = Cv, + 0, and nu: -, 00, as n -, 00, 

- x0) 5. C-ZC~T,  (4) 

where o2 = (uiuz + o$z + p20~o,")/(oz + p20z),C is 
a real number, and T takes value t at which B ( t )  + 14/2 
attains its unique minimum with probability 1. Here B(t) 
is a two-sided Brownian motion. 

Proof: See the Appendix. 
To find the confidence intervals, it would be useful to 

have the distribution of T. Bhattacharya and Brockwell 
(1976) showed that the probability density function g ( t )  of 
T is symmetric about 0 and 

g ( t )  = 3 2 exp(t) { 1 - CP (; A)}  -; { 1 - CP (2 A)} ,  

t > 0, 

where CP is the standard normal cumulative distribution 
function. 

Next, we state the limiting distribution of the estimators 
for the parameters a and p, which are also in our main 
concern. 
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Theorem 4.2. Under the conditions of Theorem 4.1, as 
n + 00, the random vector 

Proof. See the Appendix. 
To construct the approximate confidence intervals for 

XO, a, and p, we need the following theorem. 

Theorem 4.3. Under the conditions of Theorem 4.1,& + 
a,b + p,pl  + p1,F2 -, p2,6; + a;,6," + u,", and 
6: + a:, where all converge in probability as n + 00. 

Proof. See the Appendix. 

4.2 Efficiency Using the Additional Information of Vl 
If we do not have information for the concomitant vari- 

ables Y,, then we have a mean change problem, which has 
been discussed by, for example, Sen and Srivastava (1975) 
and Worsley (1979) for the detection of change. If addi- 
tional observations Y, are obtained, how can we utilize this 
information for estimation of the changepoint? Informa- 
tion concerning the changepoint is implicitly contained in 
Y, through the relationship (1). This could significantly im- 
prove the estimation over that based only on observations 
X,. We thus consider the asymptotic gain due to the ad- 
ditional information of Y,. If we omit the information of 
Y,, then the MLE of XO is given by A* = j /n ,  where j 
maximizes 

in the range no 5 j 5 n - no. Then (by Bhattacharya and 
Brockwell 1976), the limiting distribution of A* can be de- 
scribed by the following. 

Theorem 4.4. Under the conditions of Theorem 4.1, as 
n + 00, 

nv:(i* - ~ 0 )  4 ~ - 2 ( o * ) 2 ~ ,  

where (a*)2 = a: + a;. 
Yao (1987) also independently obtained this result for a 

sequence of independent random variables, and his numer- 
ical results showed that the limiting distribution provided a 
good approximation in the normal case. 

Intuitively, it is clear that the information concerning the 
changepoint parameter in (X,, Y,) is better than that of X, 
alone. To confirm this point and quantify the gain due to 
additional information of Y,, we consider some relative ef- 
ficiency based on the sample sizes. 

Under local shifts in mean, and considering p1 - p2 = 
Cv, + 0 as n + 00, let n' = n'(n) denote the Sam- 

ple size needed for the estimator A* to attain the same 
asymptotic variance of A. Then a plausible definition of 
asymptotic relative efficiency (ARE) of A* with respect 
to i which utilizing the additional information of Y, is 
eff(i*, A) = n'/n. When there is no confusion, we 
denote eff(i*, A) by eff for simplicity. Then, it follows from 
Theorem 4.1 and Theorem 4.4 that we have 

(5)  
n' sd{(a*)2T} - eff = lim - = -- 

R-oo n sd{a2T} a2 * 

It is easy to see that 1 5 eff < 00. In the following the 
behavior of eff is more clearly described. By Theorem 4.1 
and Theorem 4.4, we have the following. 

Theorem 4.5. Under the conditions of Theorem 4.1, 

a. eff = 1 + p2a;/(a:a," + 
b. 1 5 eff 5 1 + a:/a;; 
c. eff depends on a;, a,", and a: only through a;/a: and 

d. if ui = a," = a:, then eff = 1 +/3 /( 2 + P 2 ) .  

Note that the ARE eff = 1 if and only if = 0 or a: = 0. 
When ,8 = 0, it is clear that any information concerning the 
changepoint in X is not contained in Y. When a: = 0, 
there is no measurement error in X, and in this situation 
it is quite interesting to find that the changepoint estimator 
gains nothing at all by taking additional information from 
Y, because i* and are both asymptotically unbiased and 
attain same asymptotic variance. Intuitively, this is because 
all information concerning the changepoint in Y is com- 
pletely included in that of X. 

On the other hand, from (a) and (b) of Theorem 4.5, with 
other parameters being fixed, the loss of efficiency incurred 
by using only X, instead of both X, and Y, is increas- 
ing in IpI and is bounded by a:/(a; + a:). This accords 
with the intuition that the correlation between X, and Y, is 
pai/{(a: + S,")(o," + p20i)}1/2, which is increasing in 1/31. 
Thus i turns to be more efficient than A* when the corre- 
lation of X, and Y, becomes larger. The ARE eff, plotted 
in Figure 1, is a function of when a; = a," = 062. Note 
that in this case, eff increases to the limit 2. This indicates 
that under the structural EIVR with changepoint model, the 
loss of efficiency incurred by using only X, instead of both 
X, and Y, is increasing in IpI but is at most 50%. 

Table 1 gives some results of a simulation study per- 
formed to examine the efficiency of 1 for the change- 
point parameter. The entries tabulate the bias and root 
mean squared error (RMSE) of and i* and the rela- 
tive RMSE of with respect to A*, which is defined by 
RMSE(i*)/RMSE(i). For each simulation, 10,000 repli- 
cations of sample sizes n = 50,100, or 200 were generated 
using the IMSL (International Mathematical and Statistical 
Libraries 1991) routine RNNOA with true underlying pa- 
rameters X = .4,p1 = O,p2 = l or 2,a = 0,p = l or 2, and 

Table 1 shows that when p = 1 or 2, the estimator i 
behaves much better than A* in the sense of bias and RMSE. 

+ p2a:a;), which in- 
creases in IpI; 

a,"/a:; and 

0; = 0," = 0; = 1. 
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2.00 

I I I 

4 6 8 10 

IPI 
Figure 1. Asymptotic Relative Efficiency of the Estimator by Using 

the Additional Information of Yi as a Function of IpI With 6 = 4 = 4. 

The relative RMSE of with respect to A* increases as IpI 
increases, which agrees with Theorem 4.5. 

If the true model is a functional EIVR with changepoint 
model (i.e., o$ = 0 in model (1) with (2)), then the ARE eff 
= 1 + p20,Z/o,Z, which is also an increasing function of 101 
and eff = 1, if and only if 0 = 0 or og = 0. In this case it 
is obvious that 1 5 eff < 00. The ARE eff is also plotted in 
Figure 2 as a function of 101 when a: = a;. 

5. EXAMPLES 

eff 

4 -  

3 -  

PI 
Figure 2. Asymptotic Relative EMciency of the Estimator by Using 

the Additional Information of Vi as a Function of IpI With 4 = 4 and 
I$ = 0. 

structural EIVR with changepoint model are shown in Table 
2. The approximate p value is evaluated by using the im- 
proved Bonferroni upper bound of Srivastava and Worsley 
(1986). The estimated changepoint is the ninth observation 
(September 1967) with the maximum Hotelling T2 statis- 
tic = 9.1656, which is significant at level a = .05. 
For this level, we may find further changes in a sequence 
that is split into two subsequences. The subsequence Jan- 
uary 1967-September 1967 has no significant change (p 
value = .3599); however, the remaining subsequence (Oc- 

ican Stock Exchanges (X) can be analyzed. McGee and 
Carleton (1970) provided the data and analyzed it using the 
piecewise regression method. Holbert (1 982) also analyzed 
the data from the Bayesian viewpoint. The results of the 

Table 1. Bias and RMSE of and A* in the Structural EIVR 
With Changepoint Model 

Relative 
p p2 n Bias RMSE Bias RMSE RMSE 

1.0 1.0 50 .0380 .1950 .0403 .2007 1.0293 
100 .0136 .1166 .0179 .1337 1.1465 
200 .0027 .0523 DO46 .0675 1.2915 

2.0 50 .0029 .0534 DO43 .0653 1.2224 
100 .0004 .0211 .0008 .0286 1.3548 
200 .0001 .0098 .0002 .0132 1.3540 

100 .0080 .0897 .0158 .1257 1.4011 
200 .0015 ,0390 .0046 .0678 1.7385 

2.0 50 .0015 .0389 .0044 .0664 1.7093 
100 .0003 .0173 .0009 .0307 1.7726 
200 .0001 .0078 .0002 .0138 1.7730 

i i* 

2.0 1.0 50 .0287 .i694 .0405 .2014 1.1891 

Table 2. Monthly Dollar Volume of Sales (in Millions) on the 
Boston Stock Exchange and Combined New York and 

American Stock Exchanges 

Estimates 
of other 

Sequence Changepoint supx Tf p value parameters 
~~ 

9.1656' .0210 f i 1  = 12002.03, 
fi2 = 14122.18, 

1-35 9 

d E -233.86, 
f i  = .026 

1 -9 2 3.9620 .3599 
10.8985' .0149 f i l  = 14482.86, 

fi2 = 13701.38, 
6 = -953.50, 

10-35 23 

f i  = .077 
10.3473' 0413 f i j  = 14611.60, 

fi2 = 14161.02, 
d = 2349.37, 
f i  = -1.151 

10-23 19 

8.0140 .0926 
5.2972 .2294 

24-35 33 
10-19 15 

* Significant at level a = .05. 
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Table 3. Changepoint for the Imports Data 

Estimates 
of other 

Sequence Changepoint supx Tf p value parameters 

1-18 14 13.7726' .0113 81 = 211.19, 
82 = 329.65, 
d: = -20.76, 
@ = .214 

1-14 9 9.3914 .0521 

* Significant at level a = .05. 

changes. Accordingly, we can conclude that three changes 
take place, one after September 1967, another one after 
June 1968, and the last one after November 1968. McGee 
and Carleton (1970) concluded that changes occurred at the 
loth, 19th, and 23rd observations. Our analysis of changes 
almost agrees with that of McGee and Carleton (1970) ex- 
cept for the first change at the ninth observation. However, 
this difference is quite small. 

5.2 Imports and Domestic Production Data 

The second example is based on aggregate data con- 
cerning import activity in the French economy. Malinvaud 
(1968) provided the data of imports (Y), gross domestic 
product (X). and other variables in France, all measured 
in billions of French francs from 1949-1966. Chatterjee 
and Price (1991) analyzed this data by the principal compo- 
nent method, which essentially followed that of Malinvaud 
(1968). Chatterjee and Price (1991) found two patterns in 
the data: the residuals declining until 1960 and then ris- 
ing. They argued that the models before and after 1960 
should be different due to the fact that the European Com- 
mon Market began operations in 1960. So we believe that 
some changepoint may exist in the data. Maddala (1 992) 
considered a functional EIVR model; however, he ignored 
the possibility that some changes in the data may arise, as 
Chatterjee and Price (1991) pointed out. In this example 
we assume the structural EIVR with changepoint model; 
the results are shown in Table 3. The only changepoint is 
estimated to be at the 14th observation (1962) with the max- 
imum Hotelling T2 statistic T&,,8 = 13.7726, which is sig- 
nificant at level a = .05. Furthermore, at the same level, 
the subsequence 1949-1 962 contains no further significant 
changes. Thus we can conclude that only one change occurs 
in 1962. 

Comparing our results to the estimates of Maddala 
(1992), we see that they are not so close, mainly because 
Maddala (1992) considered a functional EIVR that is in fact 
doubtful, because ljil - ji21 is large. 

that it is possible to have a wonderful fit with, say, four 
segments, but for the three-segment fit to not be statisti- 
cally better than the two-segment fit. Moreover, the optimal 
breakpoints for the four-segment fit are not necessarily a su- 
perset of those for the three-segment fit. Further research 
into this problem is needed. 

It needs to be mentioned that we have not extended the 
problem to the situation of segmented regression. This kind 
of model covers many important phenomena, and further re- 
search into this topic would be worthwhile. It may be noted 
that under the situation of segmented regression with errors 
in variables, the problem would be reduced to a bivariate 
normal model with changes in both mean vector and co- 
variance matrix, which is more complicated than the model 
in this study. The changepoint model involving changes in 
both mean and covariance matrix in multivariate normal 
has not yet been investigated and is worth studying. How- 
ever, when the errors-in-variables aspect is not taken into 
consideration, the pure segmented regression problem has 
been considered in the literature (see, e.g., Hinkley 1969, 
Kim and Siegmund 1989, Quandt 1958, and Van de Geer 
1988). 

APPENDIX: PROOFS 

Proof of Theorem 3.1 

To verify (a), note that with probability 1 for each X 5 XO, 

(1 - Xo)(Q + PP2) 

= p. 

Note that Wald (1940) has shown that under fairly general con- 
ditions, the Wald estimators are consistent in the EIVR with two 
groups model. 

To verify (b), for convenience, let X * ( u , b )  = l / ( b  - 
a)  c!=~+~(x, - EX,) and F*(u, b) = l / ( b  - U )  C2b,,+l(y2 - 
E X ) .  By the multivariate central limit theorem, we have the 
random vector 

fi(X'(0, [nXl),X*([nXl,n),P*(O, [n~]hP'([nX19n))' + 

6. DISCUSSION 

We have investigated the asymptotic efficiency of the 
changepoint estimator Proposed in Section 3 for the strut- 
tural EIVR with changepoint model. If @ = 09 = a:, then 

formation of X, instead of both X, and Y ,  could be as much 
as 5096, too great to be ignored. 

In Examples 5.1 and 5.2 we considered possible multiple 
changepoints, and tested them sequentially. Note, however, 

the loss of asymptotic efficiency incurred by using only in- 1: 

MVN(0, WX)), 
where 
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fi{P*(O, [nX]) - P*([nX],n) 

X ( 0 ,  [.XI) - X([nX],n) 
- - - P k ' ( 0 ,  [nXl) + Px*([7-JI,nH . (A*2) 

By the 6 method (see, e.g., Serfling 1980, p. 122), the numerator 
of (A.2) converges in distribution to N(O,{(l/X) + [l/(l - 
A)]}(.: + P'a;)), and the denominator of (A.2) converges in 
probability to ((1 - Xo) / ( l  - A ) I ( X  5 XO) + (Xo/X)I(X > 
A0)} (p l  - pz). Furthermore, by Slutsky's theorem, (b) is proved. 

Proof of Theorem 4.1 

By a straightforward calculation, (c) can also be verified. 

Srivastava and Worsley (1986) examined 

I '  v = q  i=l Y, -P(o ,n) ]  [ Y,-P(O,n) . 
xi - X ( 0 ,  n) xi - X ( 0 ,  n) 

Note that each of the first [nXo] independent random vectors 
( X i , Y i ) ' ,  1 5 i 5 n, has mean vector (pl ,a + pp1)' and co- 
variance matrix H, whereas each of the last n - [.A,] has mean 
vector ( p l , a  + &)' + v;'d and covariance matrix H, where 
d = C(1,P)' and 

Accordingly, XO is a changepoint for the sequence (Xt, x)'. Con- 
sidering (X,, K)' as the sequence K($) of Bhattacharya (19871, 
because SA is increasing in T i ,  the estimator can be seen as a 
proposed estimator of Bhattacharya (1987). From the results of 
Bhattacharya (1987), 

By a simple calculation, 

Here, for any p > O,T, takes value t at which B(t )  + ultl/2 
attains its unique minimum with probability 1, and the probability 
density function g U ( t )  of T,, is symmetric about 0 and 

-hLz{ l -Q( ;ud i )} ,  2 t > 0 .  

By a straightforward calculation, it can be shown that the distri- 
butions of T, and T1/uz are the same. Hence, Relation (4) holds. 

Proof of Theorem 4.2 
By the multivariate central limit theorem, and random vector 

f i @ * ( O ,  [nXol), x*([nXoI,n), P'(0, [ ~ ~ O I ) , ~ * ( [ ~ ~ O l , ~ ) ) '  

converges in distribution to MVN(0, ~ ( X O ) ) ,  where ~ ( X O )  is 
given in (A.1). By Theorem 4.1, - XO + 0 in probability 
as n + 00, applying the same technique in the proof of the 
Anscombe's theorem (see, e.g., Chow and Teicher 1988), we can 
show that the random vector 

f i ( X * ( O ,  [nil), X*([ni],n), P'(0, [nil), P*([ni],n))' (A.4) 

converges in distribution to MVN(0, ~ ( X O ) ) .  Straightforward cal- 
culation shows that 

fi(& - a) 

- a} 
P([ni],n)X(O, [nil) - P(0, [ni])X([ni],n) 

X ( 0 ,  [nil) - X([ni] ,n)  
= fi{ 

= fi[P([ni],n)X(O, [nil) - P(0, [ni])X([ni],n) 

- a ( X ( 0 ,  [nil) - X([ni] ,n)}]  

+ { X ( O ,  [nil) - X([ni],n)}. (A.5) 

For convenience, let E * x ( a ,  b) = l / ( b  - a) c:=,+, EX, and 
E*F(a,  b) = l / ( b  - a) c:=,+, Ex. Note that a and b may be 
random variables, and hence E * 8 ( a ,  b) and E'P(a, b) also may 
be random variables. By Theorem 4.1, n(i - XO) = O,(V;~) 
as n + 00, it can be shown that E'x(0, [nil) - p1 + 0 and 
E*X([ni] ,n)  - p2 + 0 in probability as n + 00. The numerator 
in (A.4) is equal to 

fi{P*([ni],n)X*(0, [nil) - P*(O, [ni])X*([ni],n) 

+ x*(O, [ni])E*P([ni],n) + P*([ni],n)E*x(O, [nil) 

+ E*X(O, [ni])E*P([ni],n) - X'([ni],n)E*P(O, [nil) 

- F*(O, [ni])E'X([ni] ,n)  - E'X([ni],n)E*P(O, [nil) 

- ax* (0, [nil) + ax* ([nil, n) 

- aE'X(0, [nil) + aE*X([ni],n)} 

= f i ( ( a  + PPZ)X*(O, [nil) + p1P*([ni],n) 

- (a + Pp1)R*([ni],n) 

- pzP*(0, [nil) - aX*(0 ,  [nil) 

+ aX*([ni],n)} + op(1) 



178 Journal of the American Statistical Association, March 1997 

+ OP(1). 
On the other hand, because vn + 0 and nv; 00 as 
n + 00, it can be shown that v;’{X(O, [nil) - p1} 2 0 and 
v;’{X([ni],n) - p ~ }  3 0. Hence as n + 00, the denominator 
of (A.4), 

v;l{X([O,ni]) - X([ni],n)} 1: c. 
Therefore, by Slutsky’s theorem, 

f i v n ( &  - a) = c- ’ f i (pp2X*(o,  [nil) - Pp1X*([ni],n) 

- pzV*(O, [nil) + piP’([nK],n)) + o P ( l )  (A.6) 

and 

f i v n  ( P  - P )  

= c-’fi[{P(o, [nil) - P([ni],n)} - P { X ( O ,  [nil) 

- X([niI,n))l 

- - c-’J;E{P*(o, [nil) - P*([ni],n) - PX*(O,  [nil) 

+ pX*([ni],n) + E’P(0, [nil) - E’P([ni],n) 

- PE*x(O, [nil) +PE*X([n i ] ,n ) }  

= c-’fi{P*(o, [nil) - P*([ni],n) 

- PX’(0, [nil) +PX*([ni],n)}.  (A.7) 

From (A.3), (AS), and (A.6), the asymptotic joint distribution of 
& and f i  can be obtained by the 6 method and Slutsky’s theorem. 

Proof of Theorem 4.3 

We show only P 1: p as n + oc.; the remaining parts are 
analogous and thus are omitted. Because v;’{X(O, [nil) -111) 1: 

0, and v;’{P([ni],n) - (a + ppz)} 3 0, as n + 00. Hence 
as n + co,v;’{X([O,ni]) - X([ni] ,n) )  3 C and v,’{P([O, 
nil) - P( [nil, n)} 1: Cp. Therefore, as n + 00, 

O,v,’(X([ni],n) - pz} 1: o,v;’{P(o, [nil) - (a + PPl)} 1: 

- P(0, [nil) - P([ni],n) p 

X ( 0 ,  [nil) - X([ni],n) 
P =  - + P. 

This completes the proof. 

[Received February 1994. Revised June 1996.1 
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